黎野平
发布人: 数学系 发布时间: 2017-06-26 作者: 访问次数: 1438

  1. 个人简介:

 黎野平,197211月出生,湖北省人,教授,博士生导师。 

  1. 主要学习及工作经历

教育经历:

11992.9—1996.6 湖北大学(理学学士学位);

21998.9—2001.6 武汉大学(理学硕士学位);

32002.1—2004.12 香港中文大学(哲学博士学位)。

工作经历:

11997.7—1998.8 湖北科技学院(讲师);

22005.1—2006.6 上海大学(副教授);

32005.3—2006.12 复旦大学数学科学学院博士后流动站;

42007.1—2014.4上海师范大学(教授);

52014.5—   华东理工大学(教授)。

 三、讲授课程及教学成果:

 讲授本科课程:数学分析、常微分方程、数学物理方程、实变函数、泛函分析、点集拓扑学、高等代数等;

 研究生:偏微分方程引论、广义函数与Sobolev空间、应用微分方程、二阶椭圆型方程的理论、偏微分方程的现代方法等;

 教学成果:上海市教委重点课程“数学分析”项目负责人;理学院“分析类”课程团队负责人。

 四、研究方向:

  非线性偏微分方程理论及其应用、可压缩流体力学。

 五、代表性科研项目:

1、 国家自然科学基金项目:几类宏观和微观半导体方程的若干数学问题,116711342017.1—2020.1242万,主持;

2、 国家自然科学基金项目:双极半导体模型和相关流体力学方程的数学问题,111712232012.1—2015.1245万,主持;

3、国家自然科学基金项目:流体动力学半导体模型的渐近分析,10701057,2008.1-2010.1218万,主持;

4、高等学校博士学科点专项基金:双极Euler-Poisson方程的稳态解的存在性及其稳定性,201331271100072014.1—2016.12.3112万元,主持;

5、上海师范大学科技创新团队项目:数学模型的建立、分析、算法及应用,DZL9012009.6—2012.690万,主持;

6、上海市教委创新重点项目:可压Navier-Stokes-PoissonNavier-Stokes-Korteweg 方程的数学理论,13ZZ1092013.1—2015.1216万,主持。

 六、代表性研究论文:

[1].Yeping Li and Xiongfeng Yang, Stability of stationary solution for the compressible viscous magnetohydrodynamic equations with large potential force in bounded domain, J. Differential Equations, 262 (2017), 3169–3193.

[2].Yeping Li, Vanishing viscosity and Debye-length limit to rarefaction wave with vacuum for the 1D bipolar Navier-Stokes-Poisson equation, Z.angew Math. Phys.67(2016), 1-22.

[3].Yeping Li and Zhen Luo, Zero-capillarity-viscosity limit to rarefaction waves for the one-dimensional compressible Navier-Stokes-Korteweg equations. Mathematical Methods in Applied Sciences, 39-18(2016), 5513-5528.

[4].Haiyue Kong and Yeping Li, Relaxation limit of the one-dimensional bipolar Euler-Poisson system in the bound domain, Applied Mathematics and Computation, 274(2016), 1-13.

[5].Yeping Li and Wenan Yong, Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations, Comm. Math. Sci., 14(2016), 233-247.

[6].Yeping Li and Wenan Yong, Quasi-neutral limit in a three-dimensional compressible Navier-Stokes-Poisson-Korteweg model, IMA Journal of Applied Mathematics, 80(2015), 712-727.

[7].Yeping Li and Zhiming Zhou, Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems, J. Differential Equations, 258 (2015) 3546–3566.

[8].Yeping Li and Wenan Yong, Zero Mach number limit of compressible viscous magnetohydrodynamic equations, Chinese Annals of Mathematics, Series B, 36(2015), 1043-1054.

[9].Yeping Li, Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler-Poisson equation, Nonlinear Analysis-Modelling and Control, 20(2015), 305-330.

[10].Zhiyuan Zhao and Yeping Li, Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force, Nonlinear Analysis: Real World Applications, 16(2014), 146-162.

[11].Yeping Li, Global existence and large time behavior of solutions for the bipolar quantum hydrodynamic models in the quarter plane, Mathematical Methods in Applied Sciences, 36(2013), 1409-1422.

[12].Yeping Li, Global existence and asymptotic behavior of smooth solutions to a bipolar Euler-Poisson equations in a bound domain, Z.angew Math. Phys.64(2013), 1125-1144.

[13].Yeping Li, Asymptotic behavior and quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects, Chinese Annals of Mathematics, Series B, 34B(2013), 529-540.

[14].Xuemin Zhang and Yeping Li, Zero-electron-mass limit and zero-relaxation-time limit in a multi-dimensional stationary bipolar Euler-Poisson system, Applied Mathematics and Computation, 219(2013), 5174-5184.

[15].Zhiyuan Zhao and Yeping Li, Existence and optimal decay rate of the compressible non-isentropic Navier-Stokes-Poisson models with external force, Nonlinear Analysis: Theory, Methods & Applications, 75(2012), 6130-6147.

[16].Yeping Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, Journal of Differential Equations,252(2012), 2725-2738.

[17].Yeping Li and Xiongfeng Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, Journal of Differential Equations,252(2012), 768-791.

[18].Yeping Li, Relaxation-time limit of the three-dimensional hydrodynamic model with boundary effects, Mathematical Methods in Applied Sciences, 34(2011), 1202-1210.

[19].Yeping Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson systemDiscrete and Continuous Dynamical System, B16(2011), 345-360.

[20].Yeping Li and Ting Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, Journal of Differential Equations,251(2011), 3143-3162.

[21].Yeping Li, Long-time self-similarity of classical solutions to the bipolar quantum hydrodynamic models, Nonlinear Analysis: Theory, Methods & Applications, 74(2011), 1501-1512.

[22].Yeping Li, The combined semiclassical and relaxation limit in a quantum hydrodynamic semiconductor model, Proceedings of the royal society of Edinburgh, 140A(2010),119-134.

[23].Jianfeng Mao, Fang Zhou and Yeping Li, Some limit analysis in a one-dimensional stationary quantum hydrodynamic model for semiconductors, J.Math.Anal.Appl.364(2010)186-194.

[24].Yeping Li, Relaxation limit and initial layer analysis of a bipolar isentropic hydrodynamic model for semiconductors, Mathematical and Computer Modelling, 50(2009), 470-480.

[25].Yeping Li, From a multidimensional quantum hydrodynamic model to the classical drift diffusion equation, Quarterly of Applied Mathematics, 67(2009), 489-502.

[26].Huang Feimin and Li Yeping, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Discrete and Continuous Dynamical System-Series A, 24(2009), 455-470.

[27].Yeping Li and Jizhou Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Mathematical and Computer Modelling49(2009), 163-177.

[28].Yeping Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Mathematica Scientia, Series B, 28(2008)479-488.

[29].Yeping Li, Asymptotic behavior of the solutions to the one-dimensional nonisentropic hydrodynamic model for semiconductors, Wuhan Univ. J. Nat.Sci., 13(2008), 141-147.

[30].Yeping Li, Global smooth solution for a one dimensional noisentropic hydrodynamic model with non-constant lattice temperature, Z.angew Math. Phys.592008),187-211.

[31].Yeping Li, Diffusion relaxation limit of a nonisentropic hydrodynamic model for semiconductors, Math. Methods Appl. Sci.30(2007)2247-2261.

[32].Yeping Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductorsNonlinear AnalysisReal World Applictions8(2007), 1235-1251.

[33].Yeping Li, Global existence and asymptotic behavior for a multidimensional nonisentropic hydrodynamic semiconductor model with the heat source, Journal of Differential Equations, 225(2006), 134-167.

[34].Yeping Li, Large time behavior of the solutions for a multidimensional nonisentropic hydrodynamic model for semiconductors, Proceedings of the Edinburgh Mathematical Society, 49(2006), 145-172.

[35].Yeping Li, The Cauchy-Neumann problem for a multidimensioal nonisentropic hydrodynamic semiconductor model, Nonlinearity, 18(2005), 959-980.

[36].Li Yeping, Zhang Shaohua and Meng Peiyuan, On the unconditional robust stability for the multidelays interval coefficient control system, Ann. Differential Equations, 17(2001)139-148.

 七、联络方式:

e-mail: 021-64253143yplee@ecust.edu.cn