Note

The maximum girth and minimum circumference of graphs with prescribed radius and diameter

Pu Qiao, Xingzhi Zhan *
Department of Mathematics, East China Normal University, Shanghai 200241, China

Article history:
Received 15 March 2018
Received in revised form 21 June 2018
Accepted 26 June 2018
Available online 17 July 2018

Keywords:
Girth
Circumference
Block
Radius
Diameter

ABSTRACT

Ostrand posed the following two questions in 1973. (1) What is the maximum girth of a graph with radius \(r \) and diameter \(d \)? (2) What is the minimum circumference of a graph with radius \(r \) and diameter \(d \)? Question 2 has been answered by Hrnčiar who proves that if \(d \leq 2r - 2 \) the minimum circumference is \(4r - 2d \). In this note we first answer Question 1 by proving that the maximum girth is \(2r + 1 \). This improves on the obvious upper bound \(2d + 1 \) and implies that every Moore graph is self-centered. We then prove a property of the blocks of a graph which implies Hrnčiar’s result.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite simple graphs. Ostrand [6, p.75] posed the following two questions in 1973.

Question 1. What is the maximum girth of a graph with radius \(r \) and diameter \(d \)?

Question 2. What is the minimum circumference of a graph with radius \(r \) and diameter \(d \)?

Question 2 has been answered by Hrnčiar [5] who proves that if \(d \leq 2r - 2 \) the minimum circumference is \(4r - 2d \). In this note we first answer Question 1 by proving that the maximum girth is \(2r + 1 \). This improves on the obvious upper bound \(2d + 1 \) and implies that every Moore graph is self-centered. We then prove a property of the blocks of a graph which implies Hrnčiar’s result.

Google shows 63 citations of Ostrand’s paper [6] and MathSciNet shows 7 citations. It seems that Question 1 has not been treated.

For terminology and notations we follow the books [1,3,8]. We denote by \(V(G) \) the vertex set of a graph \(G \) and by \(d(u, v) \) the distance between two vertices \(u \) and \(v \). The eccentricity, denoted by \(e(v) \), of a vertex \(v \) in a graph \(G \) is the distance to a vertex farthest from \(v \). Thus \(e(v) = \max\{d(v, u) \mid u \in V(G)\} \). If \(e(v) = d(v, x) \), then the vertex \(x \) is called an eccentric vertex of \(v \). The radius of a graph \(G \), denoted \(\text{rad}(G) \), is the minimum eccentricity of all the vertices in \(V(G) \), whereas the diameter of \(G \), denoted \(\text{diam}(G) \), is the maximum eccentricity. A vertex \(v \) is a central vertex of \(G \) if \(e(v) = \text{rad}(G) \). When \(H \) is a subgraph of a graph \(G \) and \(u, v \in V(H) \), \(d_H(u, v) \) and \(e_H(v) \) will mean the distance and eccentricity in \(H \) respectively.

* Corresponding author.
E-mail addresses: 235711gm@sina.com (P. Qiao), zhan@math.ecnu.edu.cn (X. Zhan).

https://doi.org/10.1016/j.disc.2018.06.038
0012-365X/© 2018 Elsevier B.V. All rights reserved.
On Vertex Types of Graphs

Pu Qiao · Xingzhi Zhan

Received: 13 July 2017 / Revised: 11 June 2018 / Published online: 26 June 2018
© Springer Japan KK, part of Springer Nature 2018

Abstract
The vertices of a graph are classified into seven types by J.T. Hedetniemi, S.M. Hedetniemi, S.T. Hedetniemi and T.M. Lewis and they ask the following questions: (1) What is the smallest order \(n \) of a graph having \(n - 2 \) very typical vertices or \(n - 2 \) typical vertices? (2) What is the smallest order of a pantypical graph? We answer these two questions and determine all the possible orders of the graphs in these three classes in this paper.

Keywords Graph · Vertex type · Degree · Smallest order

1 Introduction
We consider finite simple graphs. For a vertex \(v \) in a graph, we denote by \(d(v) \) and \(N(v) \) the degree of \(v \) and the neighborhood of \(v \) respectively throughout the paper. Motivated by the notions of strong and weak vertices in [3] and [2], Hedetniemi, Hedetniemi, Hedetniemi and Lewis [1] classified the vertices of a graph into the following seven types.

Definition A vertex \(u \) in a simple graph is said to be

1. very strong if \(d(u) \geq 2 \) and for every vertex \(v \in N(u) \), \(d(u) > d(v) \);
2. strong if \(d(u) \geq 2 \) and for every vertex \(v \in N(u) \), \(d(u) \geq d(v) \), at least one neighbor \(x \in N(u) \) has \(d(x) < d(u) \) and at least one neighbor \(y \in N(u) \) has \(d(y) = d(u) \);
3. regular if \(d(u) \geq 0 \) and for every vertex \(v \in N(u) \), \(d(u) = d(v) \);

This research was supported by the Shanghai SF grant 15ZR1411500, Science and Technology Commission of Shanghai Municipality (STCSM) Grant 13dz2260400 and the NSFC Grant 11671148.
Algebraically positive matrices

Steve Kirklanda, Pu Qiaob, Xingzhi Zhanb,*

a Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
b Department of Mathematics, East China Normal University, Shanghai 200241, China

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 13 July 2015
Accepted 28 March 2016
Available online xxxx
Submitted by R. Brualdi

\textbf{MSC:}
15B48
15B35

\textbf{Keywords:}
Algebraically positive matrix
Primitive matrix
Irreducible matrix
Sign pattern

\textbf{A B S T R A C T}

We introduce the concept of algebraically positive matrices and investigate some basic properties, including a characterization, the index of algebraic positivity, and sign patterns that allow or require this property. We also pose two open problems.

\textcopyright 2016 Elsevier Inc. All rights reserved.

1. Introduction

A positive (nonnegative) matrix is a matrix all of whose entries are positive (nonnegative) real numbers. The notation $A > 0$ means that A is a positive matrix. We introduce the following concept and study its basic properties.

* The research presented in this paper was supported in part by NSERC, the Shanghai SF grant 15ZR1411500 and the NSFC grant 11371145.

* Corresponding author.

\textit{E-mail addresses:} Stephen.Kirkland@umanitoba.ca (S. Kirkland), 235711gm@sina.com (P. Qiao), zhan@math.ecnu.edu.cn (X. Zhan).

http://dx.doi.org/10.1016/j.laa.2016.03.049
0024-3795/© 2016 Elsevier Inc. All rights reserved.